Higher Central Extensions in Mal'tsev Categories

نویسنده

  • Tomas Everaert
چکیده

Higher dimensional central extensions of groups were introduced by G. Janelidze as particular instances of the abstract notion of covering morphism from categorical Galois theory. More recently, the notion has been extended to and studied in arbitrary semi-abelian categories. Here, we further extend the scope to exact Mal’tsev categories and beyond. For this, we consider conditions on a Galois structure Γ = (C,X, I,H, η,E) which insure the existence of an induced Galois structure Γ1 = (C1,X1, I1, H1, η1,E1) such that C1 and X1 are full subcategories of the arrow category Arr(C) consisting, respectively, of all morphisms in the class E , and of all covering morphisms with respect to Γ . Moreover, we prove that Γ1 satisfies the same conditions as Γ , so that, inductively, we obtain, for each n ≥ 1, a Galois structure Γn = (Γn−1)1, whose coverings we call n+ 1-fold central extensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

A NOTE ON DOUBLE CENTRAL EXTENSIONS IN EXACT MAL’TSEV CATEGORIES dedicated to Francis Borceux on the occasion of his sixtieth birthday

La caractérisation des extensions centrales doubles en termes de commutateurs de Janelidze (dans le cas des groupes) et de Gran et Rossi (dans le cas des variétés de Mal’tsev) est montrée d’être toujours valide dans le contexte des catégories exactes de Mal’tsev avec coégalisateurs. The characterisation of double central extensions in terms of commutators due to Janelidze (in the case of groups...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

A Note on Double Central Extensions in Exact Mal’tsev Categories

The characterisation of double central extensions in terms of commutators due to Janelidze (in the case of groups), Gran and Rossi (in the case of Mal’tsev varieties) and Rodelo and Van der Linden (in the case of semi-abelian categories) is shown to be still valid in the context of exact Mal’tsev categories.

متن کامل

Higher Central Extensions via Commutators

We prove that all semi-abelian categories with the the Smith is Huq property satisfy the Commutator Condition (CC): higher central extensions may be characterised in terms of binary (Huq or Smith) commutators. In fact, even Higgins commutators suffice. As a consequence, in the presence of enough projectives we obtain explicit Hopf formulae for homology with coefficients in the abelianisation fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2014